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a b s t r a c t

In this paper, a genetic algorithm with minimum description length (GAWMDL) is proposed for gram-
matical inference. The primary challenge of identifying a language of infinite cardinality from a finite set
of examples should know when to generalize and specialize the training data. The minimum description
length principle that has been incorporated addresses this issue is discussed in this paper. Previously, the
e-GRIDS learning model was proposed, which enjoyed the merits of the minimum description length
principle, but it is limited to positive examples only. The proposed GAWMDL, which incorporates a
traditional genetic algorithm and has a powerful global exploration capability that can exploit an opti-
mum offspring. This is an effective approach to handle a problemwhich has a large search space such the
grammatical inference problem. The computational capability, the genetic algorithm poses is not ques-
tionable, but it still suffers from premature convergence mainly arising due to lack of population di-
versity. The proposed GAWMDL incorporates a bit mask oriented data structure that performs the re-
production operations, creating the mask, then Boolean based procedure is applied to create an offspring
in a generative manner. The Boolean based procedure is capable of introducing diversity into the po-
pulation, hence alleviating premature convergence. The proposed GAWMDL is applied in the context free
as well as regular languages of varying complexities. The computational experiments show that the
GAWMDL finds an optimal or close-to-optimal grammar. Two fold performance analysis have been
performed. First, the GAWMDL has been evaluated against the elite mating pool genetic algorithm which
was proposed to introduce diversity and to address premature convergence. GAWMDL is also tested
against the improved tabular representation algorithm. In addition, the authors evaluate the perfor-
mance of the GAWMDL against a genetic algorithm not using the minimum description length principle.
Statistical tests demonstrate the superiority of the proposed algorithm. Overall, the proposed GAWMDL
algorithm greatly improves the performance in three main aspects: maintains regularity of the data,
alleviates premature convergence and is capable in grammatical inference from both positive and ne-
gative corpora.
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Fig. 2. The MDL principle as a middle level for the grammatical construction.
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1. Introduction

The problem with inductive and statistical inference systems is
to maintain regularity in the data. In other words “How to take
decisions for selecting an appropriate model that should present the
competing explanation of the data using limited observations?” Fig. 1
shows a scenario where a sender who want to transmit some data
to the receiver and, is interested in selecting the best model which
can maximally compress the observed data and deliver it to the
receiver using as few bits as possible.

Formally, the selection of the best model is the process of de-
ciding among the model classes based on the data. The Principle of
Parsimony (Occam's razor) is the soul of the model selection, states
that “given a choice of theories, the simplest is preferable” [4,,5]. The
purpose of implementing the Parsimony Principle is to find a
model, which can best fit the data. Rissanen extracted the essence
of the Occam's theory and presented the Principle of Minimum
Description Length states that “choose the model that gives the
shortest description of data” [4,12].

The domain of inquiry in this paper is the GI problem. A
grammar can be constructed without using the MDL principle, but
does not reflect any regularity in the data (Fig. 2(a)). In addition, it
is difficult to know when to generalize and specialize the training
data. In such situations, the constructed grammar is considered as
a very simple grammar, because it simply provides the validity of
any combination of words. Therefore the grammar does not show
any regularity, hence a high amount of information is needed to
specify them. In contrast, one can construct grammars that can list
all possible sentences/corpus, but is not suitable for all sentences
(Fig. 2(a)). Although, this type of grammar shows some sort of
regularity, it fails to present any generalization, since it contains
the information about each observed corpus, therefore it always
exhibits poor performance and is assumed to be very complex.

The construction of a grammar using the MDL principle shows
regularities in the data and also makes generalizations beyond the
observed corpus (Fig. 2(b)). Therefore, the MDL principle behaves
as a middle level and fills the gaps presented in Fig. 2(a). Bayes
theorem can be used to derive the MDL principle, but the working
of the MDL principle is not similar to the Bayes theorem since the
MDL principle uses code length rather probabilities [4,12,54]. The
MDL principle was used widely in the GI problem [5,13–17,55].

Several approaches have been attempted for the GI (see Section
2). This paper presents a modified GA based approach that utilizes
the MDL principle for generating an appropriate number of cor-
puses (positive and negative) to present the language feature. A GA
is a search and optimization algorithm based on natural selection
and genetics. The GA is one of the most popular algorithms from
the class of EAs. The basic principles of the GA's were initially
developed by Holland [1] and further carried by De Jong [17] and
Goldberg [2]. Goldberg and Michalewicz have presented a detailed
overview of the GA in various fields [2,11]. A GA works with a
population of solutions represented by some encoding mechan-
ism. During the implementation of a GA every solution or in-
dividual is assigned a fitness value, which is the measure of the
quality of the solution. The fitness of an individual is directly re-
lated to an objective function of the optimization problem. Then,
using the reproduction (crossover and mutation) operators an
individual population can be modified to a new one. In GAs, the
Sender Receiver

Best model selection, maximally 
compress a digital representation 

of observed data

Fig. 1. A scenario showing the rationale of using the MDL principle. The sender
wants to transmit some data to the receiver.
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search for an optimum is iteratively guided by the fitness of the
current generation. Whenever, a researcher applies a GA for an
optimization problem, it generates thousands of individuals, each
representing a solution. The obtained solutions are evaluated and
recombined to get an offspring. It has been shown in [1,2,11,55,56]
that the previous generations details are only implicitly and par-
tially preserved in the current generation. Hence, the regeneration
is hard to manage [30,73]. GAs have gained popularity due to the
applicability to a wide range of problems, including multimodal
function optimization, machine learning, pattern recognition, im-
age processing, natural language processing and grammar induc-
tion [8,23].

The domain of inquiry in this paper is the GI problem. Gram-
mar induction poses many theoretical problems, as “learning of
CFGs is much harder than learning DFA” [57]. As an implication of
the work presented in [19], learning algorithms have been devel-
oped that exploit knowledge of negative samples, structural in-
formation, or restrict grammars to some subclasses such as linear
grammars, K-bounded grammars, structurally reversible languages
and terminal distinguishable CFLs [57]. Previous research [58–60]
shows that few classes of CFLs are polynomial time identifiable in
the limit from the positive samples only. Another issue in GI is the
immense search space, where an exhaustive approach is not fea-
sible [61].

Therefore, a different and more efficient approach to explore
the search space is needed, which identifies the regularity in the
data and simplifies the representation (handles the huge number
of grammar rules). The GI approach implemented in this paper
applies a modified GA with the MDL (GAWMDL) principle that
combines with BMODS to apply reproduction operators. It utilizes
BBP for breeding in the next generation. The key benefit of im-
plementing BBP is that it introduces diversity into the population,
which helps to alleviate premature convergence (a situation when
the diversity of the population decreases, leading to an unwanted
convergence and produces a solution which is far from the best
solution). The MDL principle that is incorporated supports two
different operations, namely merge and constructs. These two
operations, reduce the burden of handling a large number of
grammar rules. In addition, the MDL principle allows the system
not to overestimate and it generates samples that are sufficient to
acquire the basic properties of the language. These features help
the proposed GA to converge. The computational experiments
have been conducted on a set of corpus (positive and negative) of
RLs and CFLs. The robust experimental environment is developed
to perform the experiments. The results have been collected and
tested against three algorithms are: GAWOMDL, EMPGA [18] and
ITBL [51–53]. The primary objective of comparing the proposed GA
with EMPGA and ITBL is both of these algorithms were proposed
for the CFG induction using the GA. Evidence is available proving
that the EMPGA handles the situation of the premature con-
vergence successfully [18]. The computational results demonstrate
nd generalization in data using the minimum description length
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that the proposed GA outperforms the other algorithms (GA-
WOMDL, EMPGA and ITBL). Statistical tests are used to determine
the significance of the proposed GAWMDL. The paired t-test has
been conducted creating three pairs: GAWOMDL-GAWMDL,
EMPGA-GAWMDL and ITBL-GAWMDL. The results of the paired t-
test concludes that the proposed GAWMDL is statistically sig-
nificant when compared to two algorithms.

The rest of the paper is organized as follows: Section 2 presents
the background and related work in the GI with pros and cons of
existing approaches. The authors discuss the role of the MDL
principle and its connection with the statistical modeling in Sec-
tion 3. The proposed GAWMDL for the GI is discussed in Section 4.
A flow chart of the proposed GAWMDL is presented to demon-
strate the overall procedure of the GI and the use of the MDL (role
of merging and construct) principle. An example is presented re-
presenting the suitability of the MDL principle in the GI and how
the GA helps in optimizing the solution. The experimental details,
parameters tuning, observations, results, discussion and statistical
tests are given in Section 5 followed by the concluding remarks for
the paper in Section 6.
2. Background and related work in grammar induction

The GI or grammar learning deals with idealized learning pro-
cedures for acquiring grammars on the basis of the evidence about
the languages [31,48,49]. It was extensively studied [6,32–37,49]
due to its wide fields of application to solve practical problems in a
variety of fields, including compilation and translation, human
machine interaction, graphic languages, design of programming
language, data mining, computational biology, natural language
processing, software engineering and machine learning etc.

The first learning model was proposed by Gold [19]. Gold ad-
dressed the question “Is the information sufficient to determine
which of the possible languages is the unknown language?” [19]. It
was shown that an inference algorithm can identify an unknown
language in the limit from the complete information in a finite
number of steps. The key issue with the Gold's approach is that
there is not sufficient information present within the inference
algorithm to identifies the correct grammar because it is always
possible that the next sample may invalidate the previous hy-
pothesis. Angluin [44] has proposed “tell tales” (a unique string
highlighting the differences between languages) to avoid the
drawback of the Gold's model. Although, Gold [19] laid the foun-
dation of the GI, Bunke and Sanfeliu [27] have presented the first
usable GI algorithm in the syntactic pattern recognition commu-
nity with the aim of classify and analyzing the patterns, classifying
the biological sequence, and for character recognition, etc. The
main drawback of this algorithm is that it only deals with positive
data, and is not to deal with noisy data, does not fit exactly into a
finite state machine and therefore good formal language theories
were lost.

Stevenson and Cordy [28,29] explains theorists and empiricists
are the two main groups contributing in the field of GI. Language
classes and learning models were considered by the theorists
group to set up the boundaries of what is learnable and how ef-
ficiently it can be learned. On the other hand, the empiricists
group dealt with a practical problem by solving it; finally they
have made significant contributions in the GI.

The teacher and query is another learning model, where a
teacher, also referred as an oracle knows the target languages and
is capable of answering the particular type of questions/queries
from the inference algorithm. Six types of queries were described
by Angluin [45], two of which are membership and equivalence
queries, and having a significant impact on learning. In case of
membership queries, the inference algorithm presents either “yes”
Please cite this article as: H.M. Pandey, et al., Maintaining regularity a
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or “no” as an answer to the oracle, whereas an oracle receives “yes”
if the hypothesis is true and “no” otherwise by the inference al-
gorithm. Valiant [46] has presented the PAC learning model, which
takes the advantages of both the identification of the limit and the
teachers and queries learning models. The PAC learning model is
different from the other two learning models for two reasons: first,
it does not guarantee exact identification with certainty; second,
compromise between accuracy and certainty. The problem with
the PAC model is that the inference algorithm must learn in
polynomial time under all distributions, but it is believed to be too
strict in reality. These problems occur because many apparently
simple classes are either known to be NP-hard or at least not
known to be polynomial learnable for all the distributions [29]. To
mitigate this issue, Li et al. [47] has proposed an inference algo-
rithm that considers the simple distribution only.

Apart from the above popular learning models, many re-
searchers have explained the suitability of the NN for the GI. The
NN has shown the ability to maintain a temporal internal state like
a short term memory [29]. In case of the NN, a set of inputs and
their corresponding outputs (Yes: string is in the target language,
No: otherwise) and a defined function needs to learn, which de-
scribes those input–output pairs [20]. Alex et al. [40] has con-
ducted experiments for the handwriting recognition using a NN
and the NN has the ability to predict subsequent elements from an
input sequence of elements. Cleeremans et al. [39] has im-
plemented a special case of a recurrent network presented by El-
man [41], known as a simple RNN, to approximate a DFA. Delgado
and Pegalajar [42] have presented a multi-objective GA to analyze
the optimal size of a RNN to learn from the positive and negative
examples. The merits of the SOM have been used to determine the
automation, after the completion of the training process. Al-
though, the NN has been widely used for the GI, as it was found
good at simulating an unknown function, but it was found less
effective because there is no way to reconstruct the function from
the connections in a trained network [29].

A detailed survey of various GI algorithms is presented in
[6,29,30,38,39,43,44]. The inductive inference is the process of
making a generalization from the input (string). Wyard [3] has
presented the impact of the different grammatical representation
and the experimental result shows that the EA uses standard CFG
in BNF has outperformed the others. Thanaruk and Okumaru [20]
have classified the grammar induction methods into three major
categories, namely; supervised, semi-supervised and unsupervised
on the basis of the type of required data. Javed et al. [21] presented
a GP based approach to learning the CFG. The work presented in
[2] was an extension of the work conducted in [3] applying the
grammar specific heuristic operator. In addition, a better con-
struction of the initial population was suggested. Choubey and
Kharat [22] have presented a sequential structuring approach that
performs coding and decoding of the binary coded chromosomes
into terminal and non-terminals and vice-versa. A CFG induction
library was presented using the GA, which contains various Java
classes to perform the GI [8,23]. Hrncic and Marjan [61,62] have
implemented a MA for the GI that assists the domain experts and
software language engineers to develop the DSLs by automatically
producing a grammar. Hrncic et al. [63] has proposed an un-
supervised incremental learning algorithm using a MA for the
DSLs. The authors [74] have proposed a GI approach known as
MAGIc (based on the MA), to extract grammars from DSL
examples.

Sakakibara and Kondo [51] have proposed a GA for learning the
CFG from a finite sample of positive and negative examples. The
authors [51] have used a table similar to the parse table that re-
duces the partitioning problem of non-terminal and then the GA
has been applied to solve the partitioning problem. Jaworski and
Unold [52] have brought some improvement, which involve:
nd generalization in data using the minimum description length
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initial population block size manipulation, block deletes specia-
lized operator and modified fitness function and experimentally
proved that the TBLA is not vulnerable to block size and popula-
tion size, and the ITBL is capable of finding the solutions faster.
Bhalse and Gupta [53] have applied the ITBL for the GI.
3. Minimum description length principle

The theory of induction [64,65] says that under the right cir-
cumstances learning is “finding a shorter description of the observed
data”. the MDL principle suggests choosing the model, which
provides the shortest description of data [4]. it works on coding
rather on probability. hence, the focus is about casting a statistical
model as a means of generating code, and resulting code lengths.
the MDL principle has connections with more traditional frame-
works given for the statistical estimation. in classical terms, we
intend to estimate the parameter θ of a given model.

R{ }Μ θ θ Θ= ( | ) ∈ ⊆ ( )f x : 1n k

Eq. (1) is based on observations = ( )x x x........n
n1 . The aim is to

choose θ̂ to maximize ( )θf xn over θ Θ∈ . According to the max-

imum likelihood principle θ̂ 's asymptotic efficiency in the form of
repeated sampling under some regularity and handled by Cramer–
Rao information lower bound theory in the finite sample case.
From a coding point of view, both sender and receiver know which
member θf of the parametric family Μ generated a data string xn is
simply − ( )θf xlog n

2 , since on average code based on θf , achieve
entropy lower bound. The noticeable thing is minimizing
− ( )θf xlog n

2 is the same as maximizing, therefore the MDL principle
coincides with the maximum likelihood principle in parametric
estimation problems. The MDL principle enjoys all the desirable
features of the maximum likelihood principle. In case of modeling,
one has to transmit θ , as receiver did not know its value in ad-
vance. Adding in this case, we get a code length of the data string
xn using Eq. (2).

θ= − ( ) + ( ) ( )θMDL f x Llog 2n

Now, if the term θ( )L is constant, then the MDL principle needs
a model, which minimizes − ( )θf xlog n among all the densities in
the family. The maximum likelihood principle breaks down when
one is forced to choose among nested classes of parametric
models. This occurs most noticeably in variable selection for the
linear regression.
4. Grammatical inference using GA and the MDL principle

The input for the algorithm is a set of corpus
= { }C c c c c, , ... .. ,L

i L1 1 2 . L is the total length of the corpus, ci indicates
the ith string of the corpus set, for each i, ≤ ≤i L1 . The proposed GA
tries to infer a grammar rule. A partial grammar G is defined that
contains a set of CFG rules for the training data. G can be described
in a somewhat nonstandard way as a set of classes. For every class g ,
exactly one corresponding non-terminal ′g is present, which is the
set of grammar rules with this non-terminal on the left hand side of
the production rules. Two basic operations have been performed.
First, merge or merge for shorting the production rules. Second, the
construction operation, which construct for shorting the production
rules. If two production rules are merged, then they have been re-
moved from the G and replaced by a new production rule. The new
production rule would be obtained by taking the union of the ex-
isting grammar rules. For example, suppose ′ = { ′ → ′ ′ ′ }g g g g g/1 1 2 4 3 and

′ = { ′ → ′}g g g8 5 7 are two production rules belongs to G. Now, if ′g1 and
′g8 are merged, it produces a new production rule
Please cite this article as: H.M. Pandey, et al., Maintaining regularity a
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= { ′ ∪ ′} = { ′ → ′ ′ ′ ′}g g g g g g g g/ /new new1 8 2 4 3 7 and we would remove ′g1 and
′g8 from G. Re-indexing is done at this stage to incorporate gnew.

Merging of production rules is found effective and yields better
result by decreasing the number of classes. On the other hand, if gl
and gk are two classes, then a new class gnew is created, which
contains just one production rule = { ′ → ′ ′}g g g gnew new l k . The working
of MDL principle is used for the GI shows these two operations are
represented in a separate block in Fig. 3.

In order to define a DL for each ∈c Ci
L
1 , a system generated code

is employed, which uses a unique representation for each training
data. Dense code is set, i.e., a sequence of code words which de-
fines a training data [65]. The reason of doing this is that we are
interested in representing G in the form of code, but the in-
formation theory explains that to arrive at an ideal code (shortest
description of training data), one need to keep track of the fre-
quencies of occurrence of the training data in classes belongs in G.
The two operations (merge and construct) are useful reduces the
DL.

4.1. Genetic algorithm adapted

Pandey et al. [8] has presented a GA for CFG induction uses the
simple 1-point and 2-point crossover and a bit inversion mutation
operator to introduce diversity during the execution of the GA. The
authors [7,23] proposed a Java based library for the GI that utilizes
the GA. The algorithm implemented in [7,8,23] works successfully
for the relatively simple and deterministic CFG induction, but has
been found not to work for the complex corpus. In addition, these
approaches were not focused towards handling premature con-
vergence in the GA.

In this paper, we have implemented an algorithm, GAWMDL,
for the CFG induction. The proposed GAWMDL is different from
the other approaches as it uses BMODS to perform the reproduc-
tion operations [10]. The breeding process is also different from
the previous approaches as the proposed GAWMDL incorporates
BBP which uses Boolean based operators (substep-3 in Fig. 3),
which not only generates the new offspring, but also alleviates the
risk of premature convergence [30] by introducing diversity into
the population. The proposed GAWMDL algorithm uses the merit
of the MDL principle ad maintains the regularity and general-
ization in the training data according the DL (Fig. 3).

The e-GRIDS learning model also uses the MDL principle for the
generalization and specialization of the training data [50]. The
e-GRIDS model is based on a beam search, which starts con-
structing the initial grammar for each input sentence and then
applies the e-GRIDS learning operators, which include MergeNT,
CreateNT and Create OptionalNT. The workings of these operators
are discussed in [50]. The key drawback of the e-GRIDS learning
model are: it is not fit for the negative examples, the beam search
has been used in the learning process uses three operators as
discussed above, but implementing these operators and collecting
the temporary results makes it ineffective.

The proposed GAWMDL algorithm is more powerful as it is able
to deal with both positive and negative training data. The MDL
principle increases the effectiveness of the proposed algorithm as
it supports generalization and specialization of the training data.
The training set and test set are required for the learning has been
generated by the length L (or DL) (L¼0, 1, 2, ……) such that it
covers all the possible valid strings of length L until a sufficient
number of the valid strings of corpus have been generated. The
invalid strings generated during this process are considered as
negative strings.

The flow chart of the proposed GAWMDL have BMODS and
MDL principle for the CFG induction is presented in Fig. 3. Step
2 demonstrates the process of GI and verification of production
rules. The process of the GI begins applying the mapping of the
nd generalization in data using the minimum description length
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Is New DL < Old DL?

Choose the shorter DL

Checks validity CFG rules 
using parser

Yes

No

Minimum description length principle

∪∪=

Fig. 3. Grammatical inference using GA and MDL principle. CM: crossmask, MM: mutmask, T1, T2, T3, T4: Temporary variables, OS1, OS2: offspring, DL: Description length, G:
Partial grammar set, g: Grammar class, P1, P2: Parents.
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binary strings into terminals and non-terminals [3,7,8]. We have
used 3-bit/4-bit representation of the mapping. This being decided
based on the number of symbols present in the input language (3-
bit representation has been used in Fig. 4, since two symbols (0
and 1) are used).

During the mapping process, if the string “010” or “110” is en-
countered, set null (ε). After the completion of the mapping pro-
cess, the process of the construction of the CFG starts with the
start symbol ‘S’ mapped at “000”. The symbolic representation
contains the block size of five equal to the PRL (PRL¼5).
Please cite this article as: H.M. Pandey, et al., Maintaining regularity a
principle and genetic algorithm: Case of grammatical inference, Swar
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The symbolic grammar is traced from ‘S’ to terminal to remove
useless productions and the remaining production rules are tested for
the removal of left recursion, unit production, ambiguity and left
factor. During the grammar rule generation, the MDL principle is used
in generating the code for the grammar and to perform operations:
merging and construct to reduce the complexity (see Section 4).

The string to be tested from the selected sample set is taken as
an input with the CFG rules are passed to the finite state controller
that verifies the acceptability through proliferation on the PDA. In
the EA, an individual chromosome survives based on its fitness
nd generalization in data using the minimum description length
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Mapping process for palindrome  over (0 + 1)*

Step-1: Binary Chromosome of size 120 (initial random population)

000100010000010010000101001111000101000110010000010011101011001000011001001110101010001100000100010110110000001101101110

Step-2: Symbolic chromosome mapping (3 bit representation) S1?S??S0ABS0S??S?C0CASCAA?0?A1S1???SA00?

Generation of CFG: create a block size of five equal (chosen for experiment)

000|100|010|000|010   010|000|101|001|111     000|101|000|110|010
S1?S?                                 ?S0AB                                 S0S??
000|010|011|101|011  001|000|011|001|001      110|101|010|001|100
S?C0C                                ASCAA                               ?0?A1
000|100|010|110|110   000|001|101|101|110
S1???                                  SA00?

Maximum 8 grammar rules can be derived

Mapping of non-terminals and terminals:
Non-terminals:  
S 000   A 001   B 111   C 011          
Terminals:  1 100   0 101   ? 010   ? 110
? represents null ( )

Final Rules after removing useless productions, left recursion, unit production, ambiguity and left factor S 1L S 0S L S L ? NPR = 4

Fig. 4. Demonstration of step-2 of the algorithm (coding and decoding mechanism adapted).
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value [2,9,70,71,72]. In case of the GI problem, the fitness value of
an individual chromosome largely depends on the acceptance or
rejection of positive and negative sample respectively. A total of
four cases are possible that affect the fitness value: an increase in
fitness value for APS and RNS and a decrease for ANS and RPS. The
NPRs have also shown a considerable impact on the fitness value,
hence is considered to determine the fitness value. Eq. (3) has
been used to evaluate the fitness of each population.

∑= *(( + ) − ( + )) + ( * − ) ( )K KFitness APS RNS ANS RPS 2 NPR 3

S.T.
ANSþRNSrNumber of positive samples in corpus data
ANSþRPSrNumber of negative samples in corpus data
NPR: maximum number of allowable grammar rules
K: constant
Computing Fitness: suppose the CS¼120, which derives a max-

imum 8 grammar rules (Fig. 4). In the present scenario, 25 positive
and 25 negative sample strings are found sufficient to generate the
best possible production rules. In an ideal situation, we have as-
sumed that the system is not rejecting any positive strings and not
accepting any negative sample strings, then the value of AN-
S¼RPS¼0. In the example that presented in Fig. 4, the value of
NPR¼4 is considered. K¼10 is a constant, taken so that the gram-
mar has less production rules with high fitness value can be created.

Putting these values into Eq. (3), we get 516 ((10*(25þ25)�
(0þ0))þ(2*10�4)), which is the fitness value in the first gen-
eration. At this stage, evolutionary operators (crossover, mutation
and selection) are executed. The important thing to note here is,
K¼10 is considered to conduct the experiment and any increase in
K, would lead to high value of fitness by that factor. But with
CS¼120, only 8 grammar rules can be extracted. Further, sub-
stitution/break for the removal of left recursion and other pre-
processing leads to at most an additional 4–5 rules. Therefore,
K¼10 (i.e. 2*K¼20) (from Eq. (3)) is considered that differentiate
between various grammar based on the number of rules. As dis-
cussed, an increase in K will produce high fitness values, but it will
be just for the sake of increasing the fitness value and not for re-
presenting the difference between various grammars. Hence,
K¼10 is sufficient in this process to determine the optimum
production rules. If the CS is increased to produce more grammar
rule, a higher value of K might be needed.

Step-3 shows the main functions of the proposed GAWMDL. It
utilizes BMODS [10] to improve the capability of the crossover and
mutation operations, replaces various algorithms and codifies
specialized rules of mating, supports a formal separation between
searching for a proper bit composition and an effective achieve-
ment (using the mask for crossover and mutation) of the offspring.
Previous research signifies that a binary code based GA can be
Please cite this article as: H.M. Pandey, et al., Maintaining regularity a
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grouped into an explicit and implicit binary formulation [11]. On
the other hand, in a bit masking scheme, there is no need to use an
explicit data structure, since only high level operations, working
on integer values are mapped into a discrete representation do-
main are executed. Iuspa [10] has presented a detailed description
about the construction of BMODS. Two integer arrays known as
CM and MM are used to perform crossover and mutation.

For the creation of BMODS an integer genome array has been
formed, where a set of integer values are linked with the design
variables. The binary image has been used to represent the masks
and is used to generate the CM and MM. The following convention
has been used to represent a binary image for the CM: high value, i.
e. one or true for the current image bit is a pointer to the first parent
while low value i.e. zero or false is a pointer to the second parent.
Similarly, for the MM an integer sequence has been used that in-
dicates its binary image using the following convention: “if the
pointed bit of the target string has to be inverted (i.e. high value) or
not (i.e. low value)”. In order to create a generic child individual a
vector function ( )f P P, , CM, MM1 2 has been used takes four argu-
ments: P1, P2, CM and MM.

The implementation of BMODS for any real life problem is a
two-step process: first apply crossover and mutation mask-fill
operation and then apply mask application on the selected parent
strings. Three crossovers (cut crossover, bit-by-bit and local cut)
and a mutation (mutation mask-fill: similar to an inverted muta-
tion has been applied based on a specific mutation rate) opera-
tions are applied as suggested in [10].

At substep-2 and 3, mask-fill reproduction operators are ap-
plied and then BBP. The key challenge in applying a GA is how to
handle premature convergence. BBP is able of introduce diversity
in the population in a generative manner that helps to avoid
premature convergence.

The process of generating a new offspring takes place at sub-
step-3. Two parent strings have been selected using roulette wheel
selection technique for the GAWMDL. Two complementary child
vectors are generated applying Eq. (4).

= ( )

= ( ) ( )

f P P

f P P

OS , , CM, MM

OS , , CM, MM 4

1 1 1 2

2 2 1 2

where OS1, OS2, Pi and fi ( =i 1, 2) are respectively the offspring,
parent vectors and a Boolean function that has been used to de-
termine the assembly style of a new chromosome.

The arguments CM and MM are used to determine a suitable
crossover operator (cut crossover, bit-by-bit and local cut) and
mutation rule (mutation mask-fill). For the sake of simplicity Eq.
(4) can be converted into a new form to show both crossover and
mutation operations separately. Eq. (5) represents the crossover
vector and a binary image that allows P1 or P2 to a child bit transfer
nd generalization in data using the minimum description length
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P 1 1 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
P 2 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 0 1 1

C M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
T 1 = P 1 A N D C M

T 1 1 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
T 2 = P 2 A N D ( N O T C M )

T 2 1 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
O F F S P R I N G 1 = T 1 O R T 2

O S 1 1 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0

M M 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
O F F S P R I N G  A F T E R  M U T A T I O N  = O F F S P R I N G 1 X O R M M

O S 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1
O S 2 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0

P 1 : P A R E N T 1 , P 2 : P A R E N T 2 , C M : C R O S S M A S K , T 1 , T 2 : T E M P  V A R I A B L E , O S 1 : O F F S P R I N G , M M : M U T M A S K

Fig. 5. Demonstration of a new offspring generation after applying genetic reproduction of the GAWMDL.

Positive
"10","1010","101010","10101010",

"1010101010","101010101010",
............
Negative

"1","0","11","00","01","101",
 "100","1011",.........................

S->M M->? M->11M
S->10B B->SS B->0

S->C0C S->A0 C->ASA A->0
S->CI S->1CSM M->S0SM M->? I->SM  I->M C->010A A->1

?>-A?>-MM1A>-MM>-S
S->M 00S->A0SSM  M->BSM  M->?  B->1S A->1S0

.............................

S->?    S->10
S->C 0 A M   M->?  M->1 C M  C->AA1 C->0S  A->10

S->M   M->CM   M->?   C->1S0S
...................................

S->10M M->SM M->?  (1013)  NPR= 3
S->M   M->CM M->?  C->1S0S (1012)  NPR= 4
S->1C0M  M->SM  M->?  C->? (1012)  NPR= 4

S->10M M->SL   M->?  L->SM  L->M  (1011)  NPR= 5
S->C  M->CM M->? C->10M  (1012)  NPR= 4   

S->?  S->10S (1014)  NPR= 2

Complex Grammar at Initial Stage of Evolution
Sample Space (Training Data) L1: (10)* 

CFG Rules Good fit to 
the data with fitness
CFG Rules Good fit to 
the data with fitness

Simple but non-Constraint CFG 
Rules at intermediate stage Good CFG Rules with best 

fitness value at final stage

1 2

3 4

Fig. 6. Demonstration of MDL principle (for L1¼(10)*) which says that “more we are able to compress the data implies that we learned more” (NPR: Number of production
rules).

Table 1
Test Languages.

L-id Language description Standard sets

L1 All strings not containing ‘000’ over
(0þ1) *.

Tomita [25]/Dupont set [26]

L2 0*1 over {0þ1}*. Dupont set [26]
L3 (00)*(111)* over {0þ1}*. –

L4 Any String with even 0 and odd 1 over
{0þ1}*.

–

L5 0(00)*1 over {0þ1}*. –

L6 All strings with even number of 0 over
{0þ1}*.

–

L7 (00)*10* over {0þ1}*. –

L8 Balanced Parentheses Problem. Huijsen [24]/Keller and Lutz
set [5]

L9 {0n1n, nZ0} over {0þ1}*. Keller and Lutz set [5]
L10 {0n12n nZ0} over {0þ1}*. Dupont set [26]
L11 Even Length Palindrome over {a, b}* Huijsen [24]/Keller and Lutz

set [5]
L12 (10)* over (0 þ 1)* Tomita [25]/Dupont set [26]
L13 Odd binary number ending with 1 Dupont set [26]

Table 2
Resultant grammar rules with fitness value and number of production rules.

L-id Fitness Grammar < ∑ >V P S, , , NPR

L1 1011 o{S,C,M}, {0, 1}, {S-CCM, M-?, M-1SM, C-?, C-0},
S4

5

L2 1014 o{S}, {0, 1}, {S-1, S-0S}, S4 2
L3 1013 o{S}, {0, 1}, {S-?, S-11S1, S-00S}, S4 3
L4 1011 o{S, M}, {0, 1}, {S-1M, S-0SM, M-SSM, M-?, M-

0M}, S4
5

L5 1013 o{S, C}, {0, 1}, {S-C, S-00S, C-01}, S4 3
L6 1012 o{S, C}, {0, 1}, {S-C, S-1S, S-0S, C-0}, S4 4
L7 1012 o{S, M}, {0, 1}, {S-1M, S-00SM, M-?}, M-0M 4
L8 1014 o{S}, {(,)}, {S-?, S-(S)S}, S4 2
L9 1014 o{S}, {0, 1}, {S-?, S-0S1}, S4 2
L10 1012 o{S, A}, {0, 1}, {S-A11, S-1, S-011, A-0S}, S4 4
L11 1013 o{S}, {a, b}, {S-bSb, S-aSa, S-?}, S4 3
L12 1014 o{S}, {0, 1}, {S-?, S-10S}, S4 2
L13 1012 o{S, M}, {0, 1}, {S-1M, S-0SM, M-SM, M-?}, S4 4

NPR: number of production rules.
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according to the correlated CM value.

= ( ) ( ( ))

= ( ) ( ( )) ( )

P P

P P

OS AND CM OR AND NOT CM

OS AND CM OR AND NOT CM 5
1 1 2

2 2 1
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Eq. (6) expresses the mutation operation and has been derived
from the Eq. (4), under the situation that a single MM vector of
both child strings is set.

= ( )OS OS XOR MM 6j i

The step-by-step mechanism of generating a new offspring is
nd generalization in data using the minimum description length
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Table 3
Comparative analysis of GA with and without MDL.

L-id GAWOMDL GAWMDL ITBL EMPGA

Th GR m s Th GR m s Th GR m s Th GR m s

L1 30 21710 22.6 5.7 27 15711 15.4 4.5 28 1878 20.7 4.3 31 2479 24.8 6.2
L2 16 977 8.3 3.85 12 674 5.3 4.3 19 1077 6.2 3.4 18 1375 11.6 4.89
L3 21 26716 26.3 8.95 17 24715 23.2 6.78 18 28715 27.5 8.24 25 30712 30.4 9.5
L4 33 21711 18.7 6.3 30 19710 16.6 5.8 29 19712 16.4 5.8 37 26714 21.8 7.41
L5 44 1279 10.45 5.46 39 977 8.53 4.8 47 13711 10.9 5.62 51 1578 11.9 12.02
L6 18 1479 14.9 4.8 13 1277 12.83 3.4 13 1279 12.5 3.9 23 1878 17.5 5.86
L7 19 18713 21.3 8.91 16 1578 18.8 6.24 16 1978 22.8 7.3 26 2177 20.2 10.61
L8 16 877 8.2 3.64 9 674 6.7 3.2 18 775 6.6 3.2 19 13710 9.7 5.9
L9 15 774 3.6 1.24 11 573 3.46 1.03 14 875 5.6 2.3 21 107 6 5.3 3.54
L10 22 33724 21.63 14.83 17 30722 19.8 12.6 26 37725 20.2 15.9 27 38726 27.4 16.2
L11 16 30719 32.4 10.08 12 29715 29.23 8.6 19 27721 30.3 27.8 22 42721 35.4 18.3
L12 10 774 4.8 1.235 8 573 3.8 1.12 7 975 3.2 2.7 16 1178 4.8 3.5
L13 24 1478 12.3 5.3 12 1276 10.9 4.6 21 1379 11.2 6.7 31 1879 13.5 7.6

Th: Threshold, GR: Generation range, m: Mean, s: Standard deviation.
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depicted at Substep-3 (Fig. 3), whilst Fig. 5 demonstrates the
process of offspring creation using an example.

The interesting thing to note at this stage is as the CM and MM
vectors have been considered as an argument to the function (f1
and f2), a new individual has no strict correlation with the specific
type of the crossover scheme or parent pairs as happens in case of
an explicit binary formulation. In some cases, if the evolutionary
process is needed for some couples for an identical crossover such
as bit-by-bit crossover with a constant seed, then only that op-
eration is performed and fill the mask properly, then apply Eq. (5)
multiple times, changing the selected parent pairs only.

An individual population is updated with its fitness value
(substep-4) and then merge the populations. This process has been
repeated until the termination condition (maximum number of
generations or threshold (threshold indicates the highest rank
solution's fitness)) is reached. This stopping criterion is common
for each language input. Finally, we display the best production
rules and the processing time.

4.2. The MDL principle in the GI: an example

An example of L1¼(10)* demonstrates the applicability of the
MDL principle in maintaining the regularity of the data (Fig. 6).

) The first ellipse indicates the sample space of the positive and
negative training data for L1¼(10)*.

) Initially, we get very complex CFG rules with a low fitness value
which can be refined by applying the reproduction operator in
each generation, where the MDL principle helps in compressing
the grammar rules and to generate positive and negative string
set required during the execution.

) After a few generations, simple grammar, but non-constraint
CFG rules have been received.

) When the proposed GAWMDL search reaches the threshold/
termination condition, it produces grammar's rule and max-
imum fitness value. Such grammars are assumed as a good
grammar with best fitness value.

) In the fourth ellipse six CFG rules are provided: first CFG rules
have NPR¼3, fitness value¼1013. In second, third and fifth CFG,
NPR¼4, fitness value¼1012 but the noticeable thing is the rules
generated are different from the same language. At fourth CFG,
NPR¼5, fitness value¼1011. In case of sixth CFG, NPR¼2, fit-
ness value¼1014, indicates that the MDL principle has com-
pressed the data more in the case of sixth CFG rules with a
maximum fitness value and therefore the system has learned
more.
Please cite this article as: H.M. Pandey, et al., Maintaining regularity a
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In the present scenario, for selecting the corpus, strings of
terminals are generated for the length L for the given language.
Initially, L¼0 is chosen, which gradually increases up to the re-
quired length to represent the language features. Here, a corpus of
25 positive and 25 negative strings are found to be sufficient to
represent the selected languages L1–L13 for the CFG induction.
5. Simulation model

The computational experiments have been conducted on a set
of RLs and CFLs using L1 through L13 as listed in Table 1. The Java
programming Net Beans IDE 7.0.1, Intel Core™ 2 processor
(2.8 GHz) with 2 GB RAM have been used.

5.1. Parameter tuning

An extensive control parameter tuning is performed. The or-
thogonal array with Taguchi SNR [66–69] is utilized for the tuning
process. The Taguchi SNR is a log function of the desired output
serves as an objective function for the optimization helps in data
analysis and prediction of an optimum result. Eq. (7) has been
used to evaluate the SNR.

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑= −

( )=

SNR
y

N
10 log

7
i

u

N
u

i1

2u

where i¼experiment number, u¼trial number, Ni¼number of
trials for the experiment, and yu¼number generations taken in
each trial to reach to the solution.

The GA's performance largely depends on PS, CS, CR and MR.
During the tuning process four control factors with three levels PS¼
[120, 180, 360], CS¼[120, 240, 280], CR¼[0.3, 0.7, 0.9], and MR¼
[0.2, 0.5, 0.8] have been used, where following setting gave the best
results PS: CS: CR: MR¼[120: 120: 0.9: 0.8]. The maximum number
of generations¼500 is taken for the experimentations.

5.2. Performance comparison

The authors have compared the performance of the proposed
GAWMDL with the GAWOMDL, ITBL and EMPGA. The ITBL and
EMPGA have been considered for the comparison purpose as both
algorithms were applied to the CFG induction. The EMPGA was
proposed to alleviate premature convergence [18]. As the authors
have made the claim that the proposed GAWMDL is capable of
handling the premature convergence (as the mask-fill reproduc-
tion operators and the BBP introduces diversity in the offspring's)
nd generalization in data using the minimum description length
m and Evolutionary Computation (2016), http://dx.doi.org/10.1016/j.
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Fig. 7. Fitness vs. generation charts w.r.t. proposed approaches for each algorithm implemented.
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Fig. 7. (continued)

Table 4
Paired sample statistics for Pair-1, Pair-2 and Pair-3.

Algorithm's pair Mean N Std. deviation Std. error mean

Pair 1 GAWOMDL 825.4000 15 133.89718 34.57210
GAWMDL 926.2800 15 124.15734 32.05729

Pair 2 EMPGA 860.1867 15 139.40202 35.99345
GAWMDL 926.2800 15 124.15734 32.05729

Pair 3 ITBL 866.6200 15 150.62443 38.89106
GAWMDL 926.2800 15 124.15734 32.05729

Fig. 8. Profile plot for estimated marginal means of fitness for each approach.
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leads to compare the performance of the proposed GAWMDL
against an algorithm (in our case EMPGA) that introduces diversity
in the offspring. The same computational environment has been
set up for each algorithm.

5.3. Results and discussion

The experimental results show that the GAWMDL is effective in
CFG induction. The MDL principle is able to identify the correct
sample string from the corpus with a minimum DL (Fig. 6). The GA
is a stochastic search technique; therefore results are collected at
an average of ten runs. The resultant grammar rule is validated
against the best known available grammar rules are represented
via the standard representation < ∑ >V P S, , , . Table 2 represents
the grammar rules generated, fitness value and NPRs.

In order to evaluate the performance of the proposed
GAWMDL, a comparative analysis has been conducted as depicted
in Table 3. The show that the performance has vastly improved in
the case of the GAWMDL. Table 3 shows generation range,
threshold value, mean and standard deviation for each language
L1–L13. As discussed, the results are collected at an average of the
first successful ten runs. The number of generations over ten runs
varies, therefore generation range is given. The phenomenon in-
volved with generation range can be understood with the help of
an example: the generation range for L1 in case of “GAWO MDL” is
21710 indicates that generations taken over ten runs varies be-
tween 11 (21�10) and 31 (21þ10), similarly for others. The mean
Please cite this article as: H.M. Pandey, et al., Maintaining regularity a
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and standard deviation for the GAWMDL concludes that the con-
vergence rate is faster than other algorithms.

Also, the convergence rate of the ITBL and EMPGA is considerably
good, whilst the convergence rate of the GAWOMDL is worst.

The comparison chart for the best average fitness value with
respect to the generations are shown in Fig. 7 for the first ten
iterations for each algorithm. We conclude that the proposed
GAWMDL has outperformed the other approaches. The perfor-
mance of the EMPGA is almost identical to the GAWMDL, whereas
the performance of the GAWOMDL is worst.

5.4. Statistical tests

A statistical test has been conducted to evaluate the sig-
nificance of the proposed GAWMDL with the GAWOMDL, ITBL and
EMPGA. The paired t-test is conducted on the collected sample
considering the hypothesis: “there is no significant difference in
the mean of samples at the 5% level of confidence” i.e.
nd generalization in data using the minimum description length
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Table 5
Paired sample t-test.

Algorithm's pair Paired differences t df Sig. (2-tailed)

Mean Std. deviation Std. error mean 95% Confidence interval of the difference

Lower Upper

Pair 1 GAWOMDL - GAWMDL �100.88000 41.02952 10.59378 �123.60139 �78.15861 �9.523 14 .000
Pair 2 EMPGA - GAWMDL �66.09333 50.57572 13.05859 �94.10123 �38.08543 �5.061 14 .000
Pair 3 ITBL - GAWMDL �59.66000 60.91191 15.72739 �93.39189 �25.92811 �3.793 14 .002
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A paired t-test is applied to compare the two sample means.
Three pairs: pair-1 (GAWOMDL-GAWMDL), pair-2 (EMPGA-
GAWMDL) and pair-3 (ITBL-GAWMDL) have been formed to con-
duct the paired t-test. Table 4 represents the paired sample sta-
tistics for Pair-1, 2 and 3 respectively. Total 15 (N¼15) samples
have been drawn from each algorithm. The average fitness value
for the proposed GAWMDL is 926.2800 higher than the others
825.4000, 860.1867 and 866.6200 have been received respectively
for the GAWOMDL, EMPGA and ITBL. The main result of the paired
t-test is presented in Table 5.

The mean difference for Pair-1 is �100.88000 (825.4000–
926.2800), similarly for the other pairs. The p-value represented
by “Sig. (2-tailed)” is 0.000, 0.000 and 0.002 for the Pair-1, 2, and
3 respectively. Since the obtained p-value is less than 0.05 for each
pair, so we could reject the null hypothesis and conclude that the
performance of the proposed GAWMDL is statistically significantly
different than the other algorithms (GAWOMDL, EMPGA and ITBL).
Fig. 8 shows the mean fitness value for each algorithm. The X-axis
and Y-axis are represented respectively the algorithms and esti-
mated marginal mean fitness value. From Fig. 8, it can also be seen
that the proposed GAWMDL has shown the highest average fitness
value as compared to the other algorithms.
6. Conclusions

In this paper, we have developed a GAWMDL for the CFG in-
duction using BMODS to perform the crossover and mutation
operations creating CM and MM. BBP has been used to create an
offspring in the next generation. The proposed GA uses the MDL
principle to generate a corpus of positive and negative strings up
to an appropriate length. A more robust experimental environ-
ment has been designed using an orthogonal array and the Ta-
guchi SNR method.

The authors have used 3-levels and four factors during the
robust experimental design process. The computational experi-
ments have been performed in various languages of varying
complexities (Table 1). The results reported have demonstrated
the capability of the proposed algorithm for the GI. Also, it is im-
portant to note that the Boolean based operators introduce the
diversity in the population in a generative manner that helps the
proposed GAWMDL to alleviate the premature convergence. The
performance of the proposed GAWMDL has been evaluated
against three algorithms: GAWOMDL, EMPGA and ITBL. The
EMPGA has been considered in the comparison, mainly because it
was proposed to alleviate the premature convergence within the
GA and has been applied for the GI. On the other hand, the ITBL
focusses on the CFG induction. The comparative results have de-
monstrated the superiority of the proposed GAWMDL over the
other algorithms (GAWOMDL, EMPGA and ITBL). The statistical
Please cite this article as: H.M. Pandey, et al., Maintaining regularity a
principle and genetic algorithm: Case of grammatical inference, Swar
swevo.2016.05.002i
test (paired t-test) has been conducted. The pairs (Pair-1, 2, and 3)
have been formed to conduct the tests conclude that the proposed
GAWMDL is statistically significantly different than the other
methods. One thing more to note at this stage is: the performance
of the EMPGA and ITBL is almost similar, whilst the GAWOMDL has
shown the worst performance. Overall, a GA based GI system has
been proposed using the MDL principles for the generalization and
specialization of the training data.
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